Experiment¶
Here is a tutorial on Google Colab that shows how to use the experiment module
Create Experiment¶
- labml.experiment.create(*, uuid: str | None = None, name: str | None = None, python_file: str | None = None, comment: str | None = None, writers: Set[str] | None = None, ignore_callers: Set[str] | None = None, tags: Set[str] | None = None, distributed_rank: int = 0, distributed_world_size: int = 0, distributed_main_rank: int = 0, disable_screen: bool = False)[source]¶
Create an experiment
- Keyword Arguments:
name (str, optional) – name of the experiment
python_file (str, optional) – path of the Python file that created the experiment
comment (str, optional) – a short description of the experiment
writers (Set[str], optional) – list of writers to write stat to. Defaults to
{'screen', 'app'}
.ignore_callers – (Set[str], optional): list of files to ignore when automatically determining
python_file
tags (Set[str], optional) – set of tags for experiment
distributed_rank (int, optional) – rank if this is a distributed training session
distributed_world_size (int, optional) – world_size if this is a distributed training session
- labml.experiment.record(*, name: str | None = None, comment: str | None = None, writers: Set[str] | None = None, tags: Set[str] | None = None, exp_conf: Dict[str, any] | None = None, lab_conf: Dict[str, any] | None = None, app_url: str | None = None, distributed_rank: int = 0, distributed_world_size: int = 0, disable_screen: bool = False)[source]¶
This combines
create()
,configs()
andstart()
.- Keyword Arguments:
name (str, optional) – name of the experiment
comment (str, optional) – a short description of the experiment
writers (Set[str], optional) – list of writers to write stat to. Defaults to
{'screen', 'app'}
.tags (Set[str], optional) – Set of tags for experiment
exp_conf (Dict[str, any], optional) – a dictionary of experiment configurations
lab_conf (Dict[str, any], optional) – a dictionary of configurations for LabML. Use this if you want to change default configurations such as
app_track_url
, anddata_path
.app_url (str, optional) – a shortcut to provide LabML app url instead of including it in
lab_conf
. You can set this withlabml.lab.configure()
, or with a configuration file for the entire project.distributed_rank (int, optional) – rank if this is a distributed training session
distributed_world_size (int, optional) – world_size if this is a distributed training session
- labml.experiment.evaluate()[source]¶
This should be used for evaluation of a saved experiment. This will not record anything.
Configurations & Hyper-parameters¶
- labml.experiment.configs(conf_dict: Dict[str, any])[source]¶
- labml.experiment.configs(conf_dict: Dict[str, any], conf_override: Dict[str, any])
- labml.experiment.configs(conf: BaseConfigs)
- labml.experiment.configs(conf: BaseConfigs, conf_override: Dict[str, any])
Calculate configurations
This has multiple overloads
- labml.experiment.configs(conf_dict: Dict[str, any])[source]
- labml.experiment.configs(conf_dict: Dict[str, any], conf_override: Dict[str, any])[source]
- labml.experiment.configs(conf: BaseConfigs)[source]
- labml.experiment.configs(conf: BaseConfigs, run_order: List[List[str] | str])[source]
- labml.experiment.configs(conf: BaseConfigs, *run_order: str)[source]
- labml.experiment.configs(conf: BaseConfigs, conf_override: Dict[str, any])[source]
- labml.experiment.configs(conf: BaseConfigs, conf_override: Dict[str, any], run_order: List[List[str] | str])[source]
- labml.experiment.configs(conf: BaseConfigs, conf_override: Dict[str, any], *run_order: str)[source]
- Parameters:
conf (BaseConfigs, optional) – configurations object
conf_dict (Dict[str, any], optional) – a dictionary of configs
conf_override (Dict[str, any], optional) – a dictionary of configs to be overridden
- labml.experiment.load_configs(run_uuid: str, *, is_only_hyperparam: bool = True)[source]¶
Load configs of a previous run
- Parameters:
run_uuid (str) – if provided the experiment will start from a saved state in the run with UUID
run_uuid
- Keyword Arguments:
is_only_hyperparam (bool, optional) – if True all only the hyper parameters are returned