Source code for labml.tracker

from typing import Dict, overload, Optional

from labml.internal.tracker import tracker_singleton as _internal


[docs] def set_global_step(global_step: Optional[int]): """ Set the current step for tracking Arguments: global_step (int): Global step """ _internal().set_global_step(global_step)
[docs] def add_global_step(increment_global_step: int = 1): """ Increment the current step for tracking Arguments: increment_global_step (int, optional): By how much to increment the global step. Defaults to ``1`` if not provided. """ _internal().add_global_step(int(increment_global_step))
[docs] def get_global_step() -> int: """ Returns current step """ return _internal().global_step
[docs] def set_histogram(name: str, is_print: bool = False): """ Set indicator type to be a histogram. It will log the tracked values as a histogram. Arguments: name (str): Name of the indicator is_print: (bool, optional): Whether the indicator should be printed in console. Defaults to ``False``. """ from labml.internal.tracker.indicators.numeric import Histogram _internal().add_indicator(Histogram(name, is_print))
[docs] def set_scalar(name: str, is_print: bool = False): """ Set indicator type to be a scalar. It will log a scalar of the tracked values. If there are multiple values it will log the mean. Arguments: name (str): Name of the indicator is_print: (bool, optional): Whether the indicator should be printed in console. Defaults to ``False``. """ from labml.internal.tracker.indicators.numeric import Scalar _internal().add_indicator(Scalar(name, is_print))
def _add_dict(values: Dict[str, any]): for k, v in values.items(): _internal().store(k, v) @overload def add(values: Dict[str, any]): ... @overload def add(name: str, value: any): ... @overload def add(**kwargs: any): ...
[docs] def add(*args, **kwargs): """ This has multiple overloads .. function:: add(values: Dict[str, any]) :noindex: .. function:: add(name: str, value: any) :noindex: .. function:: add(**kwargs: any) :noindex: This add tracking information to a temporary queue. These will be saved when :func:`labml.tracker.save` is called. You should use :func:`labml.tracker.add` to improve performance since saving tracking information consumes time. Although saving takes negligible amount of time it can add up if called very frequently. Arguments: values (Dict[str, any]): A dictionary of key-value pairs to track name (str): The name of the value to be tracked value (any): The value to be tracked kwargs: Key-value pairs to track """ if len(args) > 2: raise TypeError('tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)') if len(args) == 0: _add_dict(kwargs) elif len(args) == 1: if kwargs: raise TypeError('tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)') if not isinstance(args[0], dict): raise TypeError('tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)') _add_dict(args[0]) elif len(args) == 2: if kwargs: raise TypeError('tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)') if not isinstance(args[0], str): raise TypeError('tracker.add should be called as add(name, value), add(dictionary) or add(k=v,k2=v2...)') _internal().store(args[0], args[1])
@overload def save(): ... @overload def save(global_step: int): ... @overload def save(values: Dict[str, any]): ... @overload def save(name: str, value: any): ... @overload def save(**kwargs: any): ... @overload def save(global_step: int, values: Dict[str, any]): ... @overload def save(global_step: int, name: str, value: any): ... @overload def save(global_step: int, **kwargs: any): ...
[docs] def save(*args, **kwargs): r""" This has multiple overloads .. function:: save() :noindex: .. function:: save(global_step: int) :noindex: .. function:: save(values: Dict[str, any]) :noindex: .. function:: save(name: str, value: any) :noindex: .. function:: save(**kwargs: any) :noindex: .. function:: save(global_step: int, values: Dict[str, any]) :noindex: .. function:: save(global_step: int, name: str, value: any) :noindex: .. function:: save(global_step: int, **kwargs: any) :noindex: This saves the tracking information. Arguments: global_step (int): The current step values (Dict[str, any]): A dictionary of key-value pairs to track name (str): The name of the value to be tracked value (any): The value to be tracked kwargs: Key-value pairs to track """ if len(args) > 0 and type(args[0]) == int: _internal().set_global_step(args[0]) args = args[1:] if len(args) > 0 or len(kwargs.keys()) > 0: add(*args, **kwargs) _internal().write()
[docs] def new_line(): r""" Prints a new line. Equivalent to ``logger.log``, but handles distributed training where only the rank=0 process is tracking data. """ _internal().new_line()
[docs] def namespace(name: str): r""" Set a namespace for tracking """ return _internal().namespace(name)
[docs] def reset(): r""" Reset indicators, for a new experiment """ _internal().reset_store()