Source code for labml.configs

from typing import List, Callable, overload, Union, Tuple

from labml.internal.configs.base import Configs as _Configs
from labml.internal.configs.config_item import ConfigItem
from labml.utils.errors import ConfigsError


[docs] class BaseConfigs(_Configs): r""" You should subclass this class to create your own configurations """ pass
def _get_config_class(name: any): if isinstance(name, ConfigItem): return name.configs_class elif isinstance(name, list) and len(name) > 0 and isinstance(name[0], ConfigItem): return name[0].configs_class else: return None @overload def option(name: Union[any, List[any]]): ... @overload def option(name: Union[any, List[any]], option_name: str): ... @overload def option(name: Union[any, List[any]], pass_params: List[any]): ... @overload def option(name: Union[any, List[any]], option_name: str, pass_params: List[any]): ...
[docs] def option(name: Union[any, List[any]], *args: any): r""" Use this as a decorator to register configuration options. This has multiple overloads .. function:: option(config_item: Union[any, List[any]]) :noindex: .. function:: option(config_item: Union[any, List[any]], option_name: str) :noindex: .. function:: option(config_item: Union[any, List[any]], pass_params: List[any]) :noindex: .. function:: option(config_item: Union[any, List[any]], option_name: str, pass_params: List[any]) :noindex: Arguments: name: the configuration item or a list of items. If it is a list of items the function should return tuple. option_name (str, optional): name of the option. If not provided it will be derived from the function name. pass_params (list, optional): list of params to be passed. If not provided the configs object is passed. If provided the corresponding calculated configuration items will be passed to the function """ config_class = _get_config_class(name) if config_class is None: raise ConfigsError('You need to pass config items to option') option_name = None pass_params = None for arg in args: if isinstance(arg, str): option_name = arg elif isinstance(arg, list): pass_params = arg return config_class.calc(name, option_name, pass_params)
@overload def calculate(name: Union[any, List[any]], func: Callable): ... @overload def calculate(name: Union[any, List[any]], option_name: str, func: Callable): ... @overload def calculate(name: Union[any, List[any]], pass_params: List[any], func: Callable): ... @overload def calculate(name: Union[any, List[any]], option_name: str, pass_params: List[any], func: Callable): ...
[docs] def calculate(name: any, *args: any): r""" Use this to register configuration options. This has multiple overloads .. function:: calculate(name: Union[any, List[any]], func: Callable) :noindex: .. function:: calculate(name: Union[any, List[any]], option_name: str, func: Callable) :noindex: .. function:: calculate(name: Union[any, List[any]], pass_params: List[any], func: Callable) :noindex: .. function:: calculate(name: Union[any, List[any]], option_name: str, pass_params: List[any], func: Callable) :noindex: Arguments: name: the configuration item or a list of items. If it is a list of items the function should return tuple. func: the function to calculate the configuration option_name (str, optional): name of the option. If not provided it will be derived from the function name. pass_params (list, optional): list of params to be passed. If not provided the configs object is passed. If provided the corresponding calculated configuration items will be passed to the function """ config_class = _get_config_class(name) if config_class is None: raise ConfigsError('You need to pass config items to calculate') option_name = None pass_params = None func = None for arg in args: if isinstance(arg, str): option_name = arg elif isinstance(arg, list): pass_params = arg elif type(arg) == type: func = arg else: func = arg if func is None: raise ConfigsError('You need to pass the function that calculates the configs') return config_class.calc_wrap(func, name, option_name, pass_params)
[docs] def hyperparams(*args: any, is_hyperparam=True): r""" Identifies configuration as (or not) hyper-parameters Arguments: *args: list of configurations is_hyperparam (bool, optional): whether the provided configuration items are hyper-parameters. Defaults to ``True``. """ for arg in args: config_class = _get_config_class(arg) if config_class is None: raise ConfigsError('You need to pass config items to set hyperparams') config_class.set_hyperparams(arg, is_hyperparam=is_hyperparam)
[docs] def meta_config(*args: any, is_meta=True): r""" Identifies configuration as meta parameter Arguments: *args: list of configurations is_meta (bool, optional): whether the provided configuration items are meta. Defaults to ``True``. """ for arg in args: config_class = _get_config_class(arg) if config_class is None: raise ConfigsError('You need to pass config items to set hyperparams') config_class.set_meta(arg, is_meta=is_meta)
[docs] def aggregate(name: any, option_name: str, *args: Tuple[any, any]): r""" Aggregate configs Arguments: name: name of the aggregate option_name: aggregate option name *args: list of configs to be aggregated """ config_class = _get_config_class(name) if config_class is None: raise ConfigsError('You need to pass config item to aggregate') config_class.aggregate(name, option_name, *args)
__all__ = ['option', 'calculate', 'hyperparams', 'meta_config', 'aggregate', 'BaseConfigs', ]