Logo https://badge.fury.io/py/labml.svg https://pepy.tech/badge/labml https://img.shields.io/badge/slack-chat-green.svg?logo=slack https://img.shields.io/twitter/follow/labmlai?style=social

labml.ai

Organize machine learning experiments and monitor training progress and hardware usage from mobile

Mobile view

🔥 Features

  • Monitor running experiments from mobile phone sample_experiment

  • Monitor hardware usage on any computer with a single command

  • Integrate with just 2 lines of code (see examples below)

  • Keeps track of experiments including information like git commit, configurations and hyper-parameters

  • Keep Tensorboard logs organized

  • Dashboard to locally browse and manage experiment runs

  • Save and load checkpoints

  • API for custom visualizations analytics_colab1 analytics_colab2

  • Pretty logs of training progress

  • Open source! we also have a small hosted server for the mobile web app

Installation

You can install this package using PIP.

pip install labml

PyTorch example

from labml import tracker, experiment

with experiment.record(name='sample', exp_conf=conf):
    for i in range(50):
        loss, accuracy = train()
        tracker.save(i, {'loss': loss, 'accuracy': accuracy})

TensorFlow 2.0 Keras example

from labml import experiment
from labml.utils.keras import LabMLKerasCallback

with experiment.record(name='sample', exp_conf=conf):
    for i in range(50):
        model.fit(x_train, y_train, epochs=conf['epochs'], validation_data=(x_test, y_test),
                  callbacks=[LabMLKerasCallback()], verbose=None)

PyTorch Lightning example

from labml import experiment
from labml.utils.lightning import LabMLLightningLogger

trainer = pl.Trainer(gpus=1, max_epochs=5, progress_bar_refresh_rate=20, logger=LabMLLightningLogger())

with experiment.record(name='sample', exp_conf=conf, disable_screen=True):
    trainer.fit(model, data_loader)